skip to content

Graduate Admissions

The EPSRC Centre for Doctoral Training in Gas Turbine Aerodynamics offers a four-year PhD course in collaboration with the Universities of Oxford and Loughborough; at the end of the first year, successful students are awarded an MRes degree before proceeding to the doctoral programme.

The course benefits from the team of universities (Universities of Cambridge, Oxford and  Loughborough) and companies (Rolls-Royce, Mitsubishi Heavy Industries, Siemens, Dyson) that are collaborating to deliver the CDT. This team enables the course to provide students with an advanced course in the aerodynamics of gas turbines (compressors, combustors and turbines), as well as the skills (experimental, computational and transferrable) required to become the research and design leaders of the future in the field, in both academia and industry.

The programme aims to:

  • produce research and design leaders of the future, in academia and industry, in the field of gas turbine aerodynamics;
  • provide comprehensive research preparation training;
  • equip students with a specialised technical understanding of the aerodynamics of each of the three major gas turbine components (compressor, combustor and turbine) and knowledge of the experimental and computational tools used in their design;
  • expose students to the compromises and trade-offs that are inherent in the design of a real machine, including the limitations imposed by mechanical constraints, the interactions between components when they are integrated together to form the complete product, and the challenges of system-level optimisation;
  • foster the development of non-technical research skills such as leadership, personal effectiveness, report writing, oral communication and presentations; and
  • expose students to different research groups and industry environments.

Learning Outcomes

The MRes course will equip its graduates with a wide range of knowledge and skills, enabling them to fully engage in the field of gas turbine aerodynamics.

Graduates will have developed skills and understanding in the following broad areas:

  • fundamentals of internal fluid mechanics;
  • the advanced knowledge of flow in compressors, combustors and turbines, of design strategies used to improve the performance of these components, and of integration challenges when components are put together to form a system;
  • holistic gas turbine design, including constraints limiting the aerodynamic efficiency of a practical design;
  • a range of specialist methods for experimental measurement of flows in turbomachines;
  • experimental and computational methods used in solving gas turbine aerodynamics problems;
  • laboratory and research practice based in industrial and university research programmes;
  • the ability to report research outcomes in an appropriate way for the intended audience; and
  • techniques for preparing reports (of different types), delivering presentations, writing technical papers, verbal communication and research planning and delivery.

By the end of the PhD, successful students will have produced original work making a significant contribution to knowledge in the area of gas turbine aerodynamics.

                       


Continuing

All students who pass the MRes year will proceed to study for the PhD if they have demonstrated adequate research potential (such potential is normally demonstrated simply by passing the MRes year). Note that, as for all Cambridge PhDs, the first year of the PhD (the year after the MRes) is still probationary and students will be required to pass a first-year assessment.

Apply Now

Key Information


1+3 years full-time

Doctor of Philosophy
Master of Research in the first instance

Department of Engineering

Enquiries

Course on Department Website

Dates and deadlines:

Michaelmas 2019

Applications open
Sept. 3, 2018
Application deadline
June 28, 2019
Course Starts
Oct. 1, 2019

Some courses can close early. See the Deadlines page for guidance on when to apply.

Graduate Funding Competition
Dec. 5, 2018
Gates Cambridge US round only
Oct. 10, 2018

Similar Courses